
Atomic Wedgie: Efficient Query Filtering for Streaming Time Series

Li Wei Eamonn Keogh Helga Van Herle Agenor Mafra-Neto
Computer Science & Engineering Dept.

University of California – Riverside
Riverside, CA 92521

{wli, eamonn}@cs.ucr.edu

David Geffen School of Medicine
University of California – Los Angeles

Los Angeles, CA 90095
hvanherle@mednet.ucla.edu

ISCA Technologies
Riverside, CA 92517
isca@iscatech.com

Abstract

In many applications it is desirable to monitor a
streaming time series for predefined patterns. In
domains as diverse as the monitoring of space telemetry,
patient intensive care data, and insect populations,
where data streams at a high rate and the number of
predefined patterns is large, it may be impossible for the
comparison algorithm to keep up. We propose a novel
technique that exploits the commonality among the
predefined patterns to allow monitoring at higher
bandwidths, while maintaining a guarantee of no false
dismissals. Our approach is based on the widely used
envelope-based lower bounding technique. Extensive
experiments demonstrate that our approach achieves
tremendous improvements in performance in the offline
case, and significant improvements in the fastest
possible arrival rate of the data stream that can be
processed with guaranteed no false dismissal.

1. Introduction
In many applications it is desirable to monitor a

streaming time series for a set of predefined patterns.
Note that this problem is very different to the classic (and
much studied) time series indexing problem [7][10]. It is
however a very close analogue to the problem of Query
Filtering for discrete valued data (e.g. XML) [3]. As
noted in [3], “filtering is the inverse problem of querying
a database: In a traditional database system, a large set
of data is stored persistently. Queries, coming one at a
time, search the data for results. In a filtering system, a
large set of queries is persistently stored. (new data),
coming one at a time, drive the matching of the queries.”
While the need for filtering is well established in discrete
domains (XML, Bioinformatics etc), to the best of our
knowledge it has not been addressed for time series
before. We will therefore take the time to motivate the
need for time series filtering in several domains.

Electrocardiogram Monitoring: Cardiologists often
encounter new interesting ECG patterns. These patterns
may be unannotated or explicitly/implicitly annotated
(eg. a pattern shows up older patients that were given the
drug Terbutaline [1], or a pattern shows up when the
Holter electrodes have gotten wet). In either case, once
seeing an interesting pattern, a cardiologist will attempt to
remember it so that future encounters with similar
patterns can benefit from his experience. In our
framework, all new interesting patterns are simply saved
in the cardiologists “profile” and any future occurrences
of similar patterns will be automatically flagged.
Audio Sensor Monitoring: The damage done by
agricultural insect pests costs more than US$300 billion
annually [6]. The best way known to mitigate this cost is
to monitor insect populations and target harmful species
before they can become a major problem. Technological
advances and falling prices of hardware have created an
explosion of interest in continuous, real-time monitoring
of critical pest data by automated (“smart”) traps in recent
years [12]. While it has been shown in the lab that insects
can be identified (species and sex) from audio of their
wing beats [11], these successes are hard to reproduce in
the field because field stations typically have low
powered CPUs and the greater variety of possible insects
(i.e patterns) encountered.

As shown above, time series filtering is applied in
diverse domains. With continuously arriving data and
large number of patterns, it may be impossible for the
comparison algorithms to keep up. However, in real
world, there is likely to be significant commonality
among the predefined patterns. Based on this (empirically
validated) assumption, we propose a hierarchical wedge-
based comparison approach, which merges large number
of patterns into a small set of wedges (with similar
patterns being merged together) and then compares this
set of wedges against the subsequence in the coming data
stream. The experimental results show that our approach
provides tremendous improvements in performance.

1.1 Related Work
To the best of our knowledge, this problem has not

been addressed in the literature before. The most similar
work is by Gao and Wang [4] , where the authors
consider the problem of continuously finding the nearest
neighbor to a streaming time series. They assume that the
database of predefined patterns is in secondary memory.
Thus the problem in question is disk-bound. In contrast,
our problem is CPU-bound. We can easily fit our
relatively small database of predefined patterns in main
memory (indeed, in the insect monitoring problem, there
is no secondary storage on the sensors). Furthermore, in
Gao and Wang’s problem definition, there is always
some nearest neighbor to any streaming query. In
contrast, we are only interested in finding when a
streaming query is within r of anything in our database
and we generally expect this to very rarely be the case.

The problem is very similar to the widely studied
dictionary matching problem with errors and don't cares
[2]. This problem is defined in [2] as “preprocess(ing) a
text or collection of strings, so that given a query string p,
all matches of p with the text can be reported quickly”.
The crucial difference is that this problem deals with
discrete data, and researchers are therefore able to tackle
it with an arsenal of tools that are defined only for
discrete data, such as suffix trees and lexicographic
sorting.

The rest of the paper is organized as follows. In
Section 2 we review background material. We introduce
our algorithms and representations in Section 3. Section 4
sees a comprehensive empirical evaluation and we offer
some conclusions in Section 5.

2. Background Material
In this section, we review some background

material. We begin with a definition of our data type of
interest, time series.

Definition 1. Time Series: A time series T = t1,…,tm
is an ordered set of m real-valued variables.

We are typically not interested in the global
properties of a time series; rather, data miners confine
their interests to subsequences of the time series.

Definition 2. Subsequence: Given a time series T of
length m, a subsequence Cp of T is a sampling of
length w < m contiguous positions from T, that is, C
= tp,…,tp+w-1 for 1 ≤ p ≤ m – w + 1.

In this work, we extract all the subsequences from a
time series and compare them to the target time series.
The extraction is achieved by use of a sliding window.

Definition 3. Sliding Window: Given a time series T
of length m, and a user-defined subsequence of
length w, all possible subsequences can be extracted
by “sliding a window” across T and extracting
subsequence Cp.

Definition 4. Euclidean Distance: Given two time
series (or time series subsequences) both of length n,
the Euclidean Distance between them is the square
root of the sum of the squared differences between
each pair of corresponding data points:

() ()∑ −≡
=

n

i
ii cqCQD

1

2, , as shown in Figure 1.

Figure 1: Illustration of Euclidean distance
If we are comparing two time series, in an attempt

to discover if they are within a given distance r from
each other, we can potentially speed up the calculation
by doing early abandoning.

Definition 5. Early Abandon: During the
computation of the Euclidean distance, if we note
that the current sum of the squared differences
between each pair of corresponding data points
exceeds r2, we can stop the calculation, secure in the
knowledge that the exact Euclidean distance had we
calculated it, would exceed r.

Figure 2: Illustration of early abandoning
While the idea of early abandoning is fairly obvious

and intuitive [7], it is so critical to our work we illustrate
it in Figure 2 and provide pseudocode in Table 1. We
call the distance computation of each pair of
corresponding data points a step, and we use num_steps
to measure the utility of early abandonment.

Table 1: Euclidean distance with early abandonment
1
2
3
4
5
6
7
8
9

10
11
12

Function [dist, num_steps] = Optimized_Euclidean_Dist(Q, C, r)

accumulator = 0

For i = 1 to length(Q) // Loop over time series

 accumulator += (qi - ci)
2 // Accumulate error contribution

 If accumulator > r 2
 // Can we abandon?

 disp(‘doing an early abandon’)

 num_steps = i

 Return [infinity, num_steps] // Terminate and return an

 End // infinite error to signal the

End // early abandonment.

Return [sqrt(accumulator), length(Q)]
 // Return true dist

0 10 20 30 40 50 60 70 80 90 100

Q

C1

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

Q

C1

QQ

C1C1

0 10 20 30 40 50 60 70 80 90 100

calculation
abandoned
at this point

Q

C1

0 10 20 30 40 50 60 70 80 90 100

calculation
abandoned
at this point

Q

C1

QQ

C1C1

3. Time Series Filtering
We are now in the position to give a formal

statement of the problem. Assume we are given a set of
time series C = {C1, C2,…, Ck} all of length w and a
range r by a user. We want to either:
• Search a long batch time series for any subsequences

that are within r of any time series in the set C, or
• Monitor a time series stream for any subsequences

that are within r of any time series in the set C.
We make two realistic assumptions: 1) for the

streaming case we only have a small O(C) memory
buffer; 2) once we are given C and r, we have some
reasonable amount of time (say O(C2)) to prepare.

We begin by defining a representation of a set of
time series. We use the set of C1,..,Ck to form two new
sequences U and L:

Ui = max(C1i,..,Cki)
Li = min(C1i,..,Cki)

U and L stand for Upper and Lower respectively. We
can see why in Figure 3. They form the smallest possible
bounding envelope that encloses all members of the set
C1,..,Ck from above and below. More formally:

 ∀i Ui ≥ C1i,..,Cki ≥ Li
We call the combination of U and L a wedge, and

denote it as W = {U, L}. Now we define a lower bounding
measure between an arbitrary query Q and the entire set of
candidate sequences contained in a wedge W:

∑
= ⎪
⎩

⎪
⎨

⎧

<−
>−

=
n

i
iiii

iiii

otherwise
LqifLq
UqifUq

WQKeoghLB
1

2

2

0
)(
)(

),(_

The lower bounding property is proved in [10]
using a different notation.

Figure 3: Top) Two time series C1 and C2 Middle) A
time series wedge W, created from C1 and C2 Bottom)
An illustration of LB_Keogh

In the special case where W is created from a single
candidate sequence, LB_Keogh degenerates to the
Euclidean distance. More importantly, we can do early
abandoning with LB_Keogh, as shown in Table 2.

Table 2: LB_Keogh with early abandonment
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Function [dist, num_steps] = EA_LB_Keogh(Q, W, r)

accumulator = 0

For i = 1 to length(Q) // Loop over time series

 If qi > W.Ui // Accumulate error contribution

 accumulator += (ci - W.Ui)
2

 Elseif qi < W.L

 accumulator += (ci - W.Li)
2

 End

 If accumulator > r 2 // Can we abandon?

 disp(‘doing an early abandon’)

 num_steps = i

 Return [infinity, num_steps] // Terminate and return an

 End // infinite error to signal the

End // early abandonment.

Return [sqrt(accumulator), length(Q)] // Return true dist

Suppose we have two candidate sequences C1 and
C2 of length n, and we are given a query sequence Q and
asked if one (or both) of the candidate sequences are
within r of the query, we naturally wish to minimize the
number of steps we must perform (“step” was defined in
Section 2). We are now in a position to outline two
possible approaches to this problem.
• We can simply compare the two candidate sequences,

C1 and C2 (in either order) to the query using the early
abandon algorithm. We call this algorithm, classic.

• We can combine the two candidate sequences into a
wedge, and compare the query to the wedge using
LB_Keogh. If the LB_Keogh function early abandons,
we are done. Otherwise, we need to individually compare
the two candidate sequences, C1 and C2 (in either order)
to the query. We call this algorithm, wedgie.

Let us consider the best and worst cases for each
approach. For classic the worst case is if both candidate
sequences are within r of the query, which will require
2n steps. In the best case, the first point in the query
may be radically different to the first point in either of
the candidates, allowing immediate early abandonment
and giving a total cost of 2 steps. For wedgie, the worst
case is also if both candidate sequences are within r of
the query. We will waste n steps in the lower bounding
test between the query and the wedge, and then 1n steps
for each individual candidate, for a total of 3n. However
the best case, also if the first point in the query is
radically different, would allow us to abandon with a
total cost of 1 step.

Which of the two approaches is better depends on:
• The shape of the candidate sequences. If they are

similar, this greatly favors wedgie.

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

C2

C1

U

L

U

L

U

L

Q

W

W

• The shape of the query. If the query is truly similar to
one (or both) of the candidate sequences, this would
greatly favor classic.

• The matching distance r. Here the effect is non
monotonic and dependent on the two factors above.

We generalize the notion of wedges by hierarchally
nesting them. For example, in Figure 4 we have three
sequences C1, C2, and C3. A wedge is built from C1 and
C2, and we denote it as W(1,2) . Again, we can combine
W(1,2) and W3 into a single wedge by finding maximum
and minimum values for each ith location, from either
wedge. More concretely:

Ui = max(W(1,2)i, W3i)
Li = min(W(1,2)i, W3i)
W((1,2),3) = {U, L}

Figure 4: An example of hierarchally nested wedges
Having the generalization to hierarchal wedges,

now we generalize the wedgie approach. Given a query
Q and a wedge W((1,2),3), we compare the query to the
wedge using LB_Keogh. If it early abandons, we are
done - none of the three candidate sequences is within r
of the query. Otherwise, we need to recursively compare
the two child wedges, W(1,2) and W3 to the query using
LB_Keogh. The procedure continues until we early
abandon or reach individual candidate sequence.
Because our algorithm works by examining nested
wedges until (if necessary) only atomic wedges are left,
we call it Atomic Wedgie.

To demonstrate the utility of Atomic Wedgie, we
compared it to classic, using the 3 time series shown in
Figure 4. We measured the utility by the number of steps
needed by each approach. We found that for reasonable
values of r, the type of data we compared it to made
little difference: Atomic Wedgie was almost always 3
times faster on average.

While this result is promising, we cannot expect the
linear speedup to hold for all possible collections of
candidate sequences. This is because the utility of a
wedge is strongly correlated with its area. We can get
some intuition as to why by visually comparing
LB_Keogh(Q, W(1,2)) with LB_Keogh(Q, W((1,2),3)) in
Figure 5. Note that the area of W((1,2),3) is much greater
than that of W(1,2), and that this reduces the value
returned by the lower bound function and thus the
possibility to early abandon.

Figure 5: Top) Illustration of LB_Keogh(Q, W(1,2)).
Bottom) Illustration of LB_Keogh(Q, W((1,2),3))

At this point we can see that the efficiency of
Atomic Wedgie is dependent on the candidate sequences
and the data stream itself. In general, merging similar
sequences into a hierarchal wedge is a good idea, but
merging dissimilar sequences is a bad idea. Since the
meaning of similar/dissimilar is relative to a data stream
that by definition we cannot see in advance, it is difficult
to predict if Atomic Wedgie will be useful.

These observations motivate a further generalization
of Atomic Wedgie. Given a set of k sequences, we can
merge them into K hierarchal wedges, where 1 ≤ K ≤ k.
This merging forms a partitioning of the data, with each
sequence belonging to exactly one wedge. We use W to
denote a set of hierarchal wedges:

W = {Wset(1) , Wset(2) ,.., Wset(K)} , 1 ≤ K ≤ k
where Wset(i) is a (hierarchally nested) subset of the k
candidate sequences. Note that we have

Wset(i) ∩ Wset(j) = ∅ if i ≠ j, and
| Wset(1) ∪Wset(2) ∪..∪ Wset(K) | = k

We can then compare this set of wedges against our
query. Table 3 formalizes the algorithm.

Table 3: Algorithm Atomic Wedgie
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Function [] = Atomic_Wedgie(Q, W,K, r)

S = {empty } // Initialize a stack.

For i = 1 to K // Place all the wedges into the stack.

 enqueue(Wset(i) ,S)

End

While Not empty(S)

 T = dequeue(S)

 dist = EA_LB_Keogh(Q,T,r) // This is early abandon version.

 If isfinite(dist) // We did not early abandon.

 If cardinality(T) = 1 // T was an individual sequence.

 disp(‘The sequence ’,T, ‘is ’, dist, ‘ units from the query’)

 Else // T was a wedge, find its children

 enqueue(children(T) ,S) // and push them onto the stack.

 End

 End

End

As we shall see in the experiments, Atomic Wedgie
can produce impressive speedup if we make judicious

W(1,2)

Q

W((1,2),3)

Q

W(1,2)

QQ

W((1,2),3)

QQ

C1 (or W1) C2 (or W2) C3 (or W3)

W(1, 2)

W((1, 2), 3)

C1 (or W1) C2 (or W2) C3 (or W3)

W(1, 2)

W((1, 2), 3)

choices in the set of hierarchal wedges that make up W.
However, the number of possible ways to arrange the
hierarchal wedges is greater than KK, and the vast majority
of these arrangements will generally be worse than
classic. So specifying a good arrangement of W is critical.

Note that hierarchal clustering algorithms have very
similar goals to an ideal wedge-producing algorithm.
Hierarchal clustering algorithms attempt to minimize the
distances between objects in each subtree, while a
wedge-producing algorithm attempts to minimize the
area of each wedge. However the area of a wedge is
simply the maximum Euclidean distance between any
sequences contained therein (i.e Newton-Cotes rule from
elementary calculus). This motivates us to derive wedge
sets based on the result of a hierarchal clustering
algorithm. Figure 7 shows wedge sets W, of every size
from 1 to 5, derived from the dendrogram in Figure 6.

Figure 6: A dendrogram of five sequences

Figure 7: Wedge sets W, of size 1 to 5, derived
from the dendrogram in Figure 6

Given that the clustering algorithm produces k
wedge sets, all we need to do is to choose the best one.
We could attempt to do this by eye, for example in
Figure 7 it is clear that any sequence that early abandons
on W3, will almost certainly also early abandon on both
W2 and W5; similar remarks apply to W1 and W4. At the

other extreme, the wedge at K = 1 is so “fat” that it is
very likely to have poor pruning power. The set W =
{W((2,5),3), W(1,4)} is probably the best compromise.
However because the set of time series might be very
large, visual inspection is not scalable. More generally,
we choose the wedge set based on empirical tests. We
test all k wedge sets on a sample of data that we believe
to be representative of future data and choose the most
efficient one.
3.1 A Bound on Atomic Wedgie

As it stands, Atomic Wedgie is an efficient tool for
comparing a set of time series to a large batch dataset.
However so far it does not make any contribution to the
problem of streaming time series. The reason is that
while it is efficient on average, streaming algorithms are
limited by their worst case. The worst case is easy to see.
Imagine that we might have chosen W with size of K =
1, and the query Q is within r of all k candidates. This
means that we would do EA_LB_Keogh 2k-1 times,
without early abandoning. This is actually worse than
classic, which only requires k complete invocations of
EA_LB_Keogh in the worst case.

Fortunately, we can generally derive much tighter
bounds for the worst case of Atomic Wedgie. The
intuition is that for realistic values of r and realistic sets
of time series, no query Q will be within r of all
members of the pattern set. For example, consider the
five time series in Figure 7. Clearly any sequence Q that
is close to C1 or C4 cannot also be close to C3, C5 or C2.
A more formal explanation is given below.

Given two wedges W1 = {U1, L1} and W2 = {U2,
L2}, we define the distance between them as:

∑
= ⎪
⎩

⎪
⎨

⎧

>−
>−

≡
n

i
iiii

iiii

otherwise
ULifUL
ULifUL

WWd
1

12
2

12

21
2

21

21

0
)(
)(

),(

An example is given in Figure 8.

Figure 8: Illustration of distance between wedges
We claim that, for any two time series (one from W1

and one from W2), the distance between them is at least
d(W1, W2). This is easy to see. For unoverlapped portion,
we sum up the distance between the closest edges of the
two wedges. Recall that wedge forms the smallest
possible bounding envelope that encloses all its
members, which means any pair of the time series from

W3

W2

W5

W1

W4

W3

W(2,5)

W1

W4

W3

W(2,5)

W(1,4)

W((2,5),3)

W(1,4)

W(((2,5),3), (1,4))

K = 5 K = 4 K = 3 K = 2 K = 1

W3

W2

W5

W1

W4

W3

W2

W5

W1

W4

W3

W(2,5)

W1

W4

W3

W(2,5)

W1

W4

W3

W(2,5)

W(1,4)

W3

W(2,5)

W(1,4)

W((2,5),3)

W(1,4)

W(((2,5),3), (1,4))

K = 5 K = 4 K = 3 K = 2 K = 1

C1 (or W1)

C4 (or W4)

C2 (or W2)

C5 (or W5)

C3 (or W3)

C1 (or W1)

C4 (or W4)

C2 (or W2)

C5 (or W5)

C3 (or W3)

W (1,4)

W ((2,5),3)

W (1,4)

W ((2,5),3)

W (1,4)

W ((2,5),3)

W1 and W2 cannot be closer than the closest edge pair.
For overlapped area, we count the distance as zero.

Now we are ready to give the upper bound of the
cost of Atomic Wedgie. Say for the five time series
shown in Figure 7, we start from the biggest wedge
W(((2,5),3),(1,4)) and fail, then we need to test on wedge
W(1,4) and W((2,5),3), respectively. If rWWd ⋅≥ 2),()3),5,2(()4,1(, it
is guaranteed that we would not fail both on W(1,4) and
W((2,5),3). Without loss of generality, we can assume that
the test fails on W(1,4), which means d(Q, W(1,4)) < r.
According to triangle inequality,

r
rr

WQdWWdWQd

>
−⋅>

−>

2

),(),(),()4,1()4,1()3),5,2(()3),5,2((

which means testing on W((2,5),3) would prune the query
and we can safely stop that branch there. However，if

rWWd ⋅< 2),()3),5,2(()4,1(, we have to test on both wedges
recursively. We illustrate the computation of the cost
upper bound in Table 4.

Table 4: Compute cost upper bound of Atomic Wedgie
1
2
3
4
5
6
7
8
9

10
11
12
13

Function upperBound = Compute_ub(W, r, len)

cost = len // Current test fails

If W is atomic // Contains no child wedges

 Return cost

Else // Contains child wedges

 [W1,W2] = Get_children(W) // Get child wedges

 If d(W1,W2) >= 2r // Could not fail on both wedges

 Return cost + max { Compute_ub(W1, r, len) , Compute_ub(W2, r, len)}

 Else // May fail on both wedges

 Return cost + Compute_ub(W1, r, len) + Compute_ub(W2, r, len)}

 End

End

Recall that r is the threshold to define the similarity
between subsequence and interesting patterns, so usually
r is a relatively small value, which increases the
possibility for two wedges having distance larger than
2·r. As the result, the Atomic Wedgie algorithm can skip
a lot of computations based on the proof we gave above.
As we shall see in Section 4, with reasonable value of r,
in the worst case Atomic Wedgie is still three to four
times faster than the brute force approach.
3.2 A Final Optimization

There is one simple additional optimization that we
can do to speed up Atomic Wedgie. Recall that in both
Table 1 and Table 2 when we explained early
abandoning we assumed that the distance calculation
proceeded from left to right (cf. Figure 2). When
comparing individual sequences we have no reason to
suppose that left to right, right to left, or any other of the
w! possible orders in which we accumulate the error will
allow an earlier abandonment. However this order can

make a huge difference. It is simply that we cannot
know this order in advance.

The situation is somewhat different when we are
comparing a query to a wedge. In this case we do have
an a priori reason to suspect that some orders are better
than others. Consider the wedge shown in Figure 3. The
left side of this wedge is so “fat”, that most query
sequences will pass through this part of the wedge, thus
contributing nothing to the accumulated error. In
contrast, consider the section of the wedge from 10 to
50. Here the wedge is very thin, and there is a much
greater chance that we can accumulate error here.

The optimization then, is to simply modify Table 2
such that the loop variable is sorted in ascending order
by the value of Ui - Li (the local thickness of the wedge).
This sorting takes O(wlog(w)) for each wedge (w is the
length of the wedge), but it only needs to be done once.
As we shall see, this simple optimization speeds up the
calculations by an order of magnitude.

4. Experimental Results
In this section, we test our proposed approach with

a comprehensive set of experiments. For each
experiment, we compared Atomic Wedgie to three other
approaches, brute force, classic, and Atomic Wedgie
Random (AWR). Among them, brute force is the
approach that compares each pattern to the query
without early abandoning. AWR is similar to Atomic
Wedgie, except that instead of using the wedge sets
resulted from the hierarchical clustering algorithm (in
this paper we use complete linkage clustering), we
randomly merge time series. This modification is
essentially a lesion study which helps us separate the
effectiveness of Atomic Wedgie from our particular
wedge merging strategy.

Throughout this work we have referred to
“reasonable values of r”. As the reader may already
appreciate, the value of r can make a huge difference to
the utility of our work. We want to know the
performance of Atomic Wedgie at the values of r which
we are likely to encounter in the real world. The two
domain experts (cardiology and entomology) that are co-
authors of this work independently suggested the
following policy.

Assume that our dataset contains typical examples
of the patterns of interest. A logical value for r would be
the average distance from a pattern to its nearest
neighbor. The intuition is that if the patterns seen before
tended to be about r apart, then a future query Q that is
actually a member of this class will probably also be
within r of one (or more) pattern(s) of our dataset.

Note that all datasets used in this work are freely
available at the following URL [8].

4.1 ECG Dataset
We examined one dataset from the MIT-BIH

Arrhythmia Database [5], which contains half an hour’s
excerpts of two-channel ambulatory ECG recordings.
The recordings were digitized at 360 samples per second
per channel with 11-bit resolution over a 10 mV range.
We use signals from one channel as our batch time
series, which has 650,000 data points in total. Our
pattern set consists of 200 time series, each of length 40.
According to the cardiologists’ annotation, they are
representative patterns of left bundle branch block beat,
right bundle branch block beat, atrial premature beat,
and ventricular escape beat. For Atomic Wedgie and
AWR, we tested all 200 wedge sets on first 2,000 data
points, and chose the most efficient one to use.

Using the policy described above, we set r to 0.5
and illustrate the number of steps needed by each
approach in Figure 9 (the precise numbers are recorded
in the Appendix). The result shows that our approach is
faster than brute force by three orders of magnitude, and
faster than classic by two orders of magnitude. Note that
AWR does not achieve the same speedup as Atomic
Wedgie, suggesting that our wedge building algorithm is
effective. We also computed the upper bound of the cost
of Atomic Wedgie for ECG dataset, which is 2,120 steps.
This is about 4 times faster than the brute force
approach, which in the worst case will need to compare
the subsequence to all patterns, resulting in 200 * 40 =
8,000 steps.

Figure 9: Speedup for ECG dataset
4.2 Stock Dataset

Our second experiment considered the problem of
finding interesting patterns in a stock dataset. We tested
on a stock time series with 2,119,415 data points. There
are 337 time series of length 128 in the pattern set. They
represent three types of patterns which where annotated
by a technical analyst, with 140 for head and shoulders,
127 for reverse head and shoulders, and 70 for cup and
handle. Again, for Atomic Wedgie and AWR, we tested
all 337 wedge sets on first 2,000 data points, and used
the most efficient one for the rest of the data.

This time r is set to 4.3, and the number of steps
needed by each approach is illustrated in Figure 10. The
result again indicates impressive speedup of Atomic

Wedgie. Atomic Wedgie is faster than brute force by two
orders of magnitude, and faster than classic by one order
of magnitude. For stock dataset, the cost upper bound of
Atomic Wedgie is 18,048, which is about one third to
that of the brute force approach (337*128 = 43,136).

Figure 10: Speedup for Stock dataset
4.3 Audio Dataset

In this experiment, we tested a one-hour wave file
to monitor the occurrences of some harmful mosquito
species. The wave file, at sample rate 11,025HZ, was
converted to a 46,143,488 data points’ time series. Here
we used a sliding window of size 11,025 data points (1
second’s sound) and slid it by 5,512 points (0.5 second)
each time. Because insect detection is based on the
frequency of wing beat, we applied Fourier
transformation on each subsequence and then resampled
the time series we got (note that the FFT was performed
by specialized hardware directly on the sensor [9] and
that the time taken for this is inconsequential compared
to the algorithms considered here). We have 68
candidate time series of length 101, which are obtained
through the same procedure (FFT plus resampling) from
three different species of harmful mosquitoes, Culex
quinquefasciatus, Aedes aegypti, and Culiseta spp. For
Atomic Wedgie and AWR, we used first three minutes’
sound to decide which wedge set to use.

The number of steps needed by each approach is
shown in Figure 11. Here the parameter r equals to 4.14.
Atomic Wedgie is faster than brute force by two orders
of magnitude. Note that here AWR is worse than classic.
For audio dataset, the cost upper bound of Atomic
Wedgie is 2,929, which is about one third to that of the
brute force approach (68*101 = 6,868).

Figure 11: Speedup for Audio dataset

0

1

2

3

4

5

6
x 109

Algorithms

N
um

be
r o

f S
te

ps

brute force

classic Atomic

Wedgie AWR

0

1

2

3

4

5

6

7

8

9

10
x 1010

Algorithms

N
um

be
r o

f S
te

ps

brute force

classic
Atomic

Wedgie
AWR

0

1

2

3

4

5

6
x 10

7

Algorithms

N
um

be
r o

f S
te

ps

brute force

classic Atomic

Wedgie AWR

4.4 Speedup by Sorting
In Section 3.2, we described an optimization on

Atomic Wedgie, where the distance calculation proceeds
in the ascending order of the local thickness of the
wedge. To demonstrate the effect of this optimization,
we compare the wedge in Figure 3 to 64,000 random
walk time series, and recorded the total number of steps
required with and without sorting. The result, shown in
Figure 12, demonstrates that the simple optimization can
speed up the calculations by an order of magnitude.

Figure 12: Speedup by sorting

5. Conclusions
In this paper, we introduce the problem of time

series filtering: fast, on-the-fly subsequence matching of
streaming time series to a set of predefined patterns.
Given the continuously arriving data and the large
number of patterns we wish to support, a brute force
strategy of comparing each pattern with every time
series subsequence does not scale well. We propose a
novel filtering approach, which exploits commonality
among patterns by merging similar patterns into a wedge
such that they can be compared to the time subsequence
together. The resulting shared processing provides
tremendous improvements in performance.

The approach currently chooses the wedge set
based on the empirical test. For data changing over
time (i.e concept drift), dynamically choosing the
wedge set will be more useful. We leave such
considerations for future work.
Acknowledgments: We gratefully acknowledge Dr.
Reginald Coler for technical assistance with the insect
audio dataset.

References
[1] Carson, M. P., Fisher, A. J., & Scorza W. E. (2002).

Atrial Fibrillation in Pregnancy Associated With Oral
Terbutaline. Obstet. Gynecol, 100(5): pp. 1096-1097,
2002.

[2] Cole R., Gottlieb L., & Lewenstein M. (2004).
Dictionary Matching and Indexing with Errors and Don't
Cares. In Proceedings of the 36th annual ACM
Symposium on Theory of Computing, pp. 91-100,
Chicago, Illinois, June 13-15, 2004.

[3] Diao, Y., Altinel, M., Franklin, M. J., Zhang, H., &
Fischer, P. (2003). Path Sharing and Predicate
Evaluation for High-Performance XML Filtering. ACM
Transactions on Database Systems, 28(4): pp. 467-516,
2003.

[4] Gao L. & Wang X. (2002). Continually Evaluating
Similarity-based Pattern Queries on a Streaming Time
Series. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pp.
370-381, Madison, Wisconsin, June 3-6, 2002.

[5] Goldberger A., Amaral L., Glass L., Hausdorff J.,
Ivanov P., Mark R., Mietus J., Moody G., Peng C., & He
S. (2000). PhysioBank, PhysioToolkit, and PhysioNet:
Components of a New Research Resource for Complex
Physiologic Signals. Circulation 101(23): pp. 215-220,
2000.

[6] http://www.whitehouse.gov/omb/budget/fy2005/agricult
ure.html (US Dept of Agriculture, Office of Budget and
Management Website)

[7] Keogh, E. & Kasetty, S. (2002). On the Need for Time
Series Data Mining Benchmarks: A Survey and
Empirical Demonstration. In Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 102-111, Edmonton,
Alberta, Canada, July 23-26, 2002.

[8] Keogh, E. http://www.cs.ucr.edu/~wli/ICDM05/
[9] Kuo, J.-C., Wen, C.-H. & Wu, A.-Y. (2003).

Implementation of a Programmable 64~2048-point
FFT/IFFT Processor for OFDM-Based Communication
Systems. In Proceedings of IEEE International
Symposium on Circuits and Systems, pp. 121-124,
Bangkok, Thailand, May 25-28, 2003.

[10] Li Q., López I., & Moon B. (2004). Skyline Index for
Time Series Data. IEEE Transactions on Knowledge
and Data Engineering. 16(6): pp. 669-684, 2004.

[11] Moore A. & Miller, R. H. (2002). Automated
Identification of Optically Sensed Aphid (Homoptera:
Aphidae) Wingbeat Waveforms. Annals of the
Entomological Society of America, 95(1): pp. 1-8, 2002.

[12] Pheromone Pest Management Moritor Technologies,
Inc. http://www.moritor.com/web/

Appendix
Table A: Number of steps for each algorithm

Number of Steps

Algorithm ECG Stock Audio

brute force 5,199,688,000 91,417,607,168 57,485,160

classic 210,190,006 13,028,000,000 1,844,997

Atomic Wedgie 8,853,008 3,204,100,000 1,144,778

AWR 29,480,264 10,064,000,000 2,655,816
This table contains the numbers graphed in Figure 9, Figure
10, and Figure 11.

Table B: Number of steps w/ and w/o sorting
 r = 0.5 r = 1 r = 2 r = 3

Sorted 95,025 151,723 345,226 778,367

Unsorted 1,906,244 2,174,994 2,699,885 3,286,213
This table contains the numbers graphed in Figure 12.

r = 0.5 r = 1 r = 2 r = 3
0

0.5

1

1.5

2

2.5

3

3.5
x 106

N
um

be
r o

f S
te

ps

sorted
unsorted

